1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
8

The temperature of a flowing gas is to be measured with a thermocouple junction and wire stretched between two legs of a sting,

a wind tunnel test fixture. The junction is formed by butt-welding two wires of different material. For wires of diameter D = 125 m and a convection coefficient of h = 700 W/m^2 K, determine the minimum separation distance between the two legs of the sting, L=L1+L2, to ensure that the sting temperature does not influence the junction temperature and, in turn, invalidate the gas temperature measurement. Consider two different types of thermocouple junctions consisting of (i) copper and constantan wires and (ii) chromel and aluminel wires. Evaluate the thermal conductivity of copper and constantan at T300 K. Use kCh =19 W/mK and kA = l29 W/mK for the thermal conductivities of the chromel and alumel wires, respectively.
Engineering
1 answer:
ArbitrLikvidat [17]3 years ago
4 0

Answer:

  • minimum separation distance between the two legs of the sting L = L 1 + L 2  therefore    L = 9.48 + 4.68  = 14.16 m
  • L = 1.14 m

Explanation:

D ( diameter ) = 125 m

convection coefficient of  h = 700 W/m^2

Calculate THE CROSS SECTIONAL AREA

Ac = \frac{\pi }{4} * D^2  = \frac{\pi }{4} * ( 125 )^2 = 0.79 * 15625 = 12343.75 m^2

perimeter

p = \pi * D  = 3.14 * 125 = 392.5 m

at 300k temperature the thermal conductivity of copper and constantan from the thermodynamic property table are :

Kcu = 401 w/m.k

Kconstantan = 23 W/m.k

To calculate the length of copper wire of the thermocouple junction

L 1 = 4.6 (\frac{Kcv Ac}{h P}) ^ 1/2 = 4.6 (\frac{401 *12343.75 }{700 *392.5})^\frac{1}{2}

L 1 = 4.6 ( 4949843.75 / 274750 )^1/2

L 1 = 9.48 m

calculate length of constantan wire

L 2 = 4.6 (\frac{kcons*Ac}{hp} )^\frac{1}{2}

     = 4.6 ( (23 * 12343.75) / ( 700 * 392.5) ) ^1/2

L 2 = 4.6 ( 283906.25 / 274750 ) ^ 1/2

L 2 = 4.68 m

I)  therefore the minimum separation distance between the two legs of the sting L = L 1 + L 2

L = 9.48 + 4.68  = 14.16 m

ii)  Evaluating the thermal conductivity of copper and constantan

Kc ( thermal conductivity of chromel) = 19 w/m.k

Ka ( thermal conductivity of alumel ) = 29 W/m.k

distance between the legs L = L 1 + L 2

THEREFORE

L = 4.6 ( (Kcn * Ac ) / ( hp ) )^1/2  +  4.6 ( (Kac * Ac)/(hp) )^1/2

L = 4.6 (\frac{Ac}{hp} )^\frac{1}{2}  [ (Kcn)^\frac{1}{2}  + (Kal)^\frac{1}{2}  ]

L = 4.6 ( 12343.75 /( 700 * 392.5) )^1/2   * [ 19^1/2  + 29^1/2 ]

L = 4.6 ( 12343.75 / 274750 ) ^1/2  * 5.39

L = 1.14 m

You might be interested in
A cylindrical insulation for a steam pipe has an inside radius rt = 6 cm, outside radius r0 = 8 cm, and a thermal conductivity k
goldfiish [28.3K]

Answer:

heat loss per 1-m length of this insulation is 4368.145 W

Explanation:

given data

inside radius r1 = 6 cm

outside radius r2 = 8 cm

thermal conductivity k = 0.5 W/m°C

inside temperature t1 = 430°C

outside temperature t2 = 30°C

to find out

Determine the heat loss per 1-m length of this insulation

solution

we know thermal resistance formula for cylinder that is express as

Rth = \frac{ln\frac{r2}{r1}}{2 \pi *k * L}   .................1

here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity

so

heat loss is change in temperature divide thermal resistance

Q = \frac{t1- t2}{\frac{ln\frac{r2}{r1}}{2 \pi *k * L}}

Q = \frac{(430-30)*(2 \pi * 0.5 * 1}{ln\frac{8}{6} }

Q = 4368.145 W

so heat loss per 1-m length of this insulation is 4368.145 W

4 0
3 years ago
Clarifying the issues of a problem is the _____ step in the problem solving process.
ratelena [41]
The answer is 2nd Step because the first step is to define the problem and third is to define your goals
7 0
3 years ago
You are to design two CONCEPTUALLY different synchronous state machines (Mealy and Moore) that perform the task described below.
allochka39001 [22]
Answer:








Explanation:









I hope this helps!
3 0
3 years ago
True power can only be measured across what?
loris [4]

Answer: mets

Explanation: meets are good

6 0
3 years ago
Read 2 more answers
When Ontario
Marat540 [252]

Answer:

Explanation:

This will be possible when setting them up in summer with a certain quantity of sag, they have already know that the cables won't be able to sag any further because of the heat. During winter, when the cables contract because of the cold weather, the sag will therefore be reduced, but much tension will not be put on the cables.

4 0
3 years ago
Other questions:
  • Define a public static method named s2f that takes two String arguments, the name of a file and some text. The method creates th
    5·1 answer
  • . Consider the single-engine light plane described in Prob. 2. If the specific fuel consumption is 0.42 lb of fuel per horsepowe
    9·1 answer
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    11·1 answer
  • Which utility program reads an assembly language source file and produces an object file?
    6·1 answer
  • Water drains at a constant rate through a saturated soil column with a diameter of 1.5 feet and a height of 3 feet. The hydrauli
    11·1 answer
  • An induced-draft cooling tower cools 90,000 gallons per minute of water from 84 to 68oF. Air at 14.61 psia, 70oF dry bulb and 60
    9·1 answer
  • A car accelerates uniformly from rest to 60 km/h in 30 s. What is its displacement during this time?
    7·1 answer
  • Suppose the loop is moving toward the solenoid (to the right). Will current flow through the loop down the front, up the front,
    5·2 answers
  • 9. Calculate the total resistance and current in a parallel cir-
    11·1 answer
  • Find the differential and evaluate for the given x and dx: y=sin2xx,x=π,dx=0.25
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!