Answer:
T(water)=50.32℃
T(air)=3052.6℃
Explanation:
Hello!
To solve this problem we must use the equation that defines the transfer of heat by convection, which consists of the transport of heat through fluids in this case water and air.
The equation is as follows!

Q = heat
h = heat transfer coefficient
Ts = surface temperature
T = fluid temperature
a = heat transfer area
The surface area of a cylinder is calculated as follows

Where
D=diameter=20mm=0.02m
L=leght=200mm)0.2m
solving

For water
Q=2Kw=2000W
h=5000W/m2K
a=0.01319m^2
Tα=20C

solving for ts


for air
Q=2Kw=2000W
h=50W/m2K
a=0.01319m^2
Tα=20C

Answer:
a) 2.452
b) 1.256
Explanation:
Stress due to dead weight. = 14 Ksi
Stress due to fully loaded tractor-trailer = 45Ksi
ultimate tensile strength of beam = 76 Ksi
yield strength = 50 Ksi
endurance limit = 38 Ksi
Determine the safety factor for an infinite fatigue life
a) If mean stress on fatigue strength is ignored
β = ( 45 - 14 ) / 2
= 15.5 Ksi
hence FOS ( factor of safety ) = endurance limit / β
= 38 / 15.5 = 2.452
b) When mean stress on fatigue strength is considered
β2 = 45 + 14 / 2
= 29.5 Ksi
Ratio = β / β2 = 15.5 / 29.5 = 0.5254
Next step: applying Goodman method
Sa = [ ( 0.5254 * 38 *76 ) / ( 0.5254*76 + 38 ) ]
= 19.47 Ksi
hence the FOS ( factor of safety ) = Sa / β
= 19.47 / 15.5 = 1.256
Answer:
See explaination
Explanation:
Kindly check attachment for the step by step solution of the given problem.
Answer:
1/6
Explanation:
A dice has 6 sides, the probability of 4 appearing is 1/6.
is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get

