Answer:
6.25%
Explanation:
Given data:
Half life of lutetium-117 = 6.75 days
Percentage remaining after 27 days = ?
Solution;
Number of half lives = Time elapsed / half life
Number of half lives = 27 days / 6.75 days
Number of half lives = 4
At time zero = 100%
At first half life = 100%/2 = 50%
At second half life = 50%/2 = 25%
At 3rd half life = 25%/2 = 12.5%
At 4th half life = 12.5%/2 = 6.25%
<span> Atoms combine as the electrons from each atom are attracted to the nuclei of the atoms. This results in bonds ranging from 100% covalent to bonds with high ionic character. The combination of atoms to form compounds occurs when the compounds being formed are at lower energy than the original atoms.</span>
Answer:
32 °F
Formation. Hail forms in strong thunderstorm clouds, particularly those with intense updrafts, high liquid water content, great vertical extent, large water droplets, and where a good portion of the cloud layer is below freezing 0 °C (32 °F).
Explanation:
brainlist me and that's all I know and we have the same module I guess
When something radiates, it sends out waves or rays. ... If your house has a radiator, that might help you remember this word, because the radiator radiates warmth. Radiating is a concept that applies to anything that emits rays or waves. People camping make a fire so it can radiate light and heat.
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.