Answer is: the average atomic mass 217.606 amu.
Ar₁= 203.973 amu; the average atomic mass of isotope.
Ar₂ = 205.9745 amu.
Ar₃ = 206.9745 amu.
Ar₄ = 207.9766 amu.
ω₁ = 1.40% = 0.014; mass percentage of isotope.
ω₂ = 24.10% = 0.241.
ω₃ = 22.10% = 0.221.
ω₄ = 57.40% = 0.574.
Ar = Ar₁ · ω₁+ Ar₂ · ω₂ + Ar₃ · ω₃ + Ar₄ · ω₄.
Ar = 203.973 amu · 0.014 + 205.9745 amu · 0.241 + 206.9745 amu · 0.221 + 207.9766 amu · 0.574.
Ar = 2.855 amu + 49.632 amu + 45.741 amu + 119.378 amu.
Ar = 217.606 amu.
But abundance of isotopes is greater than 100%.
It should be lead, with the fourth isotope weighs 207.9766 amu and an abundance of 52.40.
Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.
This is true i think if that is a question
Number 4 is
-Oxidation occurs at the anode, while reduction occurs at the cathode. Recharging a battery involves the conversion of electrical energy to chemical energy. During recharging, there is movement of electrons from an external power source to the anode, and on the other side electrons are removed from the cathode.