It would have 11 valance electrons.
Example/Explanation:
Say we are talking about groups 10. Group 10 would have 10 valance electrons because of the atom's electronic arrangement in the periodic table.
Answer:
5.0 38 84.0 749.7 528.0 729.0 738.9 739.0
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.
0.00011811023622 <span>i</span><span>nches</span>
(a) The nature of bond between A and B is an ionic bond.
(b) The two main properties of the ionic compounds are:
- Ionic Compounds have high boiling and melting points as they're very strong and require a lot of energy to break.
- The electrostatic forces of attraction between oppositely charged ions lead to the formation of ions.
(c) If the ionic compound is dissolved in water, the ions in the solid separate and disperse uniformly
<h3>What is an ionic compound?</h3>
Ionic compounds contain ions and are held together by the attractive forces among the oppositely charged ions.
An ionic bond is formed by the complete transfer of some electrons from one atom to another. The atom losing one or more electrons becomes a cation—a positively charged ion.
In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
When ionic compounds dissolve in water, the ions in the solid separate and disperse uniformly throughout the solution.
Learn more about the ionic bond here:
brainly.com/question/11527546
#SPJ1