Answer: The moles of carbon needed will be, 13.8 moles
Explanation: Moles of = 5.52 mole
Now we have to calculate to moles of carbon.
The given balanced chemical reaction is,
From the balanced chemical reaction, we conclude that
As, 2 mole of react to give 5 moles of carbon
So, 5.52 mole of react to give moles of carbon
Therefore, the moles of carbon needed will be, 13.8 moles
Answer:
Gold
Explanation:
Cranberry glass or 'Gold Ruby' glass is a red glass made by adding gold salts or colloidal gold to molten glass. Tin, in the form of stannous chloride, is sometimes added in tiny amounts as a reducing agent.
Answer:
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed during a chemical reaction. This can be gleaned from the third postulate in Dalton's series. Magnesium oxide decomposes into magnesium and oxygen. If 4.03 g of magnesium oxide decomposes to form 2.43 g of magnesium, what mass of oxygen gas is also released in the reaction
The word say magnesium oxide decomposes to magnesium and oxygen
the chemical symbols say
MgO-----------> Mg + O2 (since natural oxygen is diatomic)
the balanced equation says
2MgO-------------->2Mg + O2
4.03 gm----------> 2.43 + ?0 gms
tour high school Algebra I class says
? = 4.03 -2.43 =1.60
your chemical analytcal lab says %mO in MgO = 16/40.3 = 39.7%
your calculator says
39.7/100 X 4.03 = 1.60
all of these prove the law of conservation of mass
Answer:
True
Explanation:
<u>The first law of thermodynamics</u> establishes a relationship between the internal energy of the system and the energy that it exchanges with the environment in the form of heat or work.
The first law of thermodynamics determines that the internal energy of a system increases when heat is transferred or work is done on it.
Like all the principles of thermodynamics, the first principle is based on systems in equilibrium.
On the other hand, it is likely that you have heard more than once that energy is neither created nor destroyed, only transformed. It is the general principle of energy conservation. Well, the first law of thermodynamics is the application to thermal processes of this principle.
The universe as a whole could be considered an isolated system, and therefore its total energy remains constant.