Answer:
1.2×10² mmole of Na₂S₂O₃
Explanation:
From the question given above, the following data were obtained:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity is simply defined as the mole of solute per unit litre of water. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the number of mole of Na₂S₂O₃ in the solution as illustrated below:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity = mole /Volume
0.2 = Mole of Na₂S₂O₃ / 0.6
Cross multiply
Mole of Na₂S₂O₃ = 0.2 × 0.6
Mole of Na₂S₂O₃ = 0.12 mole
Finally, we shall convert 0.12 mole to millimole (mmol). This can be obtained as follow:
1 mole = 1000 mmol
Therefore,
0.12 mole = 0.12 mole × 1000 mmol / 1 mole
0.12 mole = 120 = 1.2×10² mmole
Thus, the chemist added 1.2×10² mmole of Na₂S₂O₃
Answer:
positive charge
Explanation:
Protons are positively charged
Answer:
Basicity is measured on a scale called the pH scale. On this scale, a pH value of 7 is neutral, and a pH value of more than 7 to 14 shows increasing basicity.
pH value of 7 is weak base and value of 14 means strong base.
Answer:
Basically an object in motion or at rest will remain that way unless an outside force acts against it.
Explanation:
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia.
Answer: acceleration
a = 5.36 m/s²
Explanation: solution attached:
Convert first 60 mi/h to m/s
Use the formula for acceleration
a = vf - vi /t