Answer:
=_____________________________________
Explanation:
Answer:
HERE IS YOUR ANSWER
Explanation:
PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .
Beacuse of the loose connection of the wire .
Straight
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
To solve the problem it is necessary to apply the concepts related to Kepler's third law as well as the calculation of distances in orbits with eccentricities.
Kepler's third law tells us that

Where
T= Period
G= Gravitational constant
M = Mass of the sun
a= The semimajor axis of the comet's orbit
The period in years would be given by

PART A) Replacing the values to find a, we have




Therefore the semimajor axis is 
PART B) If the semi-major axis a and the eccentricity e of an orbit are known, then the periapsis and apoapsis distances can be calculated by



Answer: The magnitude of the velocity = 2/5 m/s
Explanation:
In this question, the magnitude of the velocity is the product of the magnitude of the displacement vector and the magnitude of the component of the velocity that acts in the direction of displacement.
This will be a scalar projection of V onto X
Please find the attached files for the solution