To solve this problem we will start by differentiating the values in each of the states of matter. Subsequently through the thermodynamic tables we will look for the values related to the entropy, enthalpy and respective specific volumes. Through the relationship of Power defined as the product between mass and enthalpy and mass, specific volume and pressure, we will find the energetic values in the two states investigated. We will start defining the states
State 1


From steam table


Now
<em>As 1-2 is isentropic</em>
State 2

From steam table

PART A) The power produced by turbine is the product between the mass and the enthalpy difference, then



b) Pump Work
State 3


The Work done by the pump is



R = 2700 ohm
I = 2.4 mA = 2.4 × 10^(-3) A
I = Q/t
Q = I × t = 2.4 × 10^(-3) × 15 s = 36 C
Answer: chemical; mechanical
Answer:
v= 300 m/s
Explanation:
Given that
altitude ,h= 4500 m
The mass ,m = 3 kg
Lets take acceleration due to gravity , g= 10 m/s²
The speed before impact at sea level = v
Initial speed ,u = 0 m/s
We know that
v²=u²+2 g h
v=final speed
u=initial speed
h=height
Now by putting the values in the above equation
v² = 0²+ 2 x 10 x 4500
v²=90000
v= 300 m/s
Therefore the speed at sea level will be 300 m/s.
Avogadros law is applied when temperature and pressure remain constant, and details the direct relationship between moles and volume in this circumstance