Answer:
Voltage-gated calcium ion channels open, and calcium ions diffuse into the cell
Answer:
2
Explanation:
To find force it's force = mass times acceleration so to find mass you would divide force by acceleration
The angles in the triangle are 91 degrees, 53 degrees and 36 degrees respectively.
<h3>What is the cosine rule?</h3>
From the cosine rule we know that;
c^2 = a^2 + b^2 - 2abcosC
Since;
a = 0.47 m
b = 0.62 m
c = 0.78 m
Then;
(0.78)^2 = (0.47)^2 + (0.62)^2 - 2(0.47 * 0.62)cosC
0.61 = 0.22 + 0.38 - 0.58 cosC
0.61 - ( 0.22 + 0.38) = - 0.58 cosC
0.01 = - 0.58 cosC
C = cos-1(0.01/-0.58)
C = 91 degrees
Using the sine rule;
b/Sin B = c/Sin C
0.62/sinB = 0.78/sin 91
0.62/Sin B = 0.78
B = sin-1 (0.62//0.78)
B = 53 degrees
Angle A is obtained from the sum of angles in a triangle;
180 - (91 + 53)
A = 36 degrees
Learn more about triangle:brainly.com/question/2773823
#SPJ1
Gravity adds 9.8 m/s to the speed of a falling object every second.
An object dropped from 'rest' (v = 0) reaches the speed of 78.4 m/s after falling for (78.4 / 9.8) = <em>8.0 seconds</em> .
<u>Note:</u>
In order to test this, you'd have to drop the object from a really high cell- tower, building, or helicopter. After falling for 8 seconds and reaching a speed of 78.4 m/s, it has fallen 313.6 meters (1,029 feet) straight down.
The flat roof of the Aon Center . . . the 3rd highest building in Chicago, where I used to work when it was the Amoco Corporation Building . . . is 1,076 feet above the street.
Answer:
W = 145.8 [N]
Explanation:
To solve this problem we must remember that weight is defined as the product of mass by gravity, in this case lunar gravity.
W = m*g
where:
m = mass = 90 [kg]
g = gravity acceleration = 1.62 [kg/m²]
W = 90*1.62
W = 145.8 [N]