Answer: only (x-y=4) and (x+y=4).
Step-by-step explanation:
Notice target point has y=0, so all terms with y are zero. Then all 6 equations reduce to m x = k, for various m and k. So calculate 4×m and compare to k six times.
x - y = 4 4=4 yes
-x - y = 4 -4=4 no
2x - y = 7 8=7 no
x + y = 4 4=4 yes
2x + y = 7 8=7 no
2x + y = -7 8=-7 no.
Answer:
1. x^4 -x^3 -4x^2 -3
a1 = -7.4
an = an-1 -13.8 (choice 1)
Step-by-step explanation:
f(x) = x^4 -x^2 +9
g(x) = x^3 +3x^2 +12
We are subtracting
f(x) -g(x) =x^4 -x^2 +9 - ( x^3 +3x^2 +12)
Distribute the minus sign
x^4 -x^2 +9 - x^3 -3x^2 -12
I like to line them up vertically
x^4 -x^2 +9
- x^3 -3x^2 -12
-------------------------
x^4 -x^3 -4x^2 -3
2. a1 = -7.4
To find the common difference, take term 2 and subtract term 1
-21.2 - (-7.4)
-21.2 + 7.4
-13.8
an = an-1 -13.8
Answer:
C
Step-by-step explanation:
Its C because its x (a variable) and is costanly changing
Answer:
I'm doing fine, how are you?
Step-by-step explanation:
Answer :
That’s it, the probability of getting tail on a single coin toss times the number of observations.
In this case, 1/2 * 72 = 36
However, there’s something called chance error. How much do you expect the result to differ from the expected value? It can be calculated as follows:
The Standard Deviation of this experiment is √(0.5)(0.5) =0.5
The Standard Error is √72 (0.5) ≈ 4.18330 round to the nearst tenth is 4
So, the expected value is 36, give or take 4.
And since the number of tails in a toss coin experiment is normally distributed, then you can expect the number of tails to be between -2 and +2 SEs from the expected value 95% of the time.
In other words, if you repeat this experiment a large number of times, you can expect to obtain between 27 and 43 tails 95% of the time.
Hope this helps