Answer:
The same amount of energy is required to either stretch or compress the spring.
Explanation:
The amount of energy required to stretch or compress a spring is equal to the elastic potential energy stored by the spring:

where
k is the spring constant
is the stretch/compression of the spring
In the first case, the spring is stretched from x=0 to x=d, so

and the amount of energy required is

In the second case, the spring is compressed from x=0 to x=-d, so

and the amount of energy required is

so we see that the amount of energy required is the same.
Sure, if the mortality (death) rate is even higher than the birth rate.
Answer:
I will explain the concept of magnetic field and how it can be calculated.
Explanation:
The formula for magnetic field at the center of a loop is given as
B = μ
I / 2R
where B is the magnetic field
R is the radius of the loop
I is the current
and μ
is the magnetic permeability of free space which is a constant 4π ×
newtons/ampere²
If the magnetic field at the center of the loop is 0, then μ
I = 0
I = 0 which means there will be no current flow in the loop.
Explanation:
Let us assume that the maximum allowable horizontal distance be represented by "d".
Therefore, torque equation about A will be as follows.

d = ![\frac{[2 \times 75 \times (0.7+0.15+0.15) - 60 \times 0.15 - 252 \times 0.15 \times 2]}{252}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20%5Ctimes%2075%20%5Ctimes%20%280.7%2B0.15%2B0.15%29%20-%2060%20%5Ctimes%200.15%20-%20252%20%5Ctimes%200.15%20%5Ctimes%202%5D%7D%7B252%7D)
d = 0.409 m
Thus, we can conclude that the maximum allowable horizontal distance from the axle A of the wheelbarrow to the center of gravity of the second bag if she can hold only 75 N with each arm is 0.409 m.