v₀ = initial speed as tarzan grabs the vine = 5.3 m/s
v = final speed as the tarzan reach the maximum height = 0 m/s
h = maximum height gained by the tarzan
m = mass of tarzan
using conservation of energy
initial kinetic energy = final kinetic energy + potential energy
(0.5) m v²₀ = (0.5) m v² + m g h
(0.5) v²₀ = (0.5) v² + g h
(0.5) (5.3)² = (0.5) (0)² + (9.8) h
h = 1.43 m
Answer:
The total Mechanical energy will be zero
Explanation: Escape velocity is the velocity required by a free object in order to overcome the impact of the force of gravity. The total mechanical energy of an object is the total energy possessed by an object which includes its kinectic and potential energy.
since the object is moving at an escape velocity which is 11.2m/s the object will be assumed to be weightless
Etotal = kinetic energy + potential energy
kinetic energy= 1/2*M*V*V
Potential energy=MGH
Etotal=1/2*0*11.2*11.2+0*0*0
Etotal=0+0
Etotal=0.
Answer:
a= 3.49 m/s^2
Explanation:
magnitude of total acceleration = sqrt{radial acceleration^2+tangential acceleration^2}.
we know that tangential acceleration a_t= change in velocity /time taken
now 90 km/h = 25 m/s
a_t = 25/17 = 1.47 m/s^2.
radial acceleration a_r = v^2/r
v= a_t×t = 1.47×13 = 19.11 m/s
a_r = 19.11^2/115= 3.175
now,


a= 3.49 m/s^2
Answer:
a) In order to catch the ball at the level at which it is thrown in the direction of motion.
b)Speed of the receiver will be 7.52m/s
Explanation:
Calculating range,R= Vo^2Sin2theta/g
R= (20^2×Sin(2×30)/9.8 = 35.35m
Let receiver be(R-20) = 35.35-20= 15.35m
The horizontal component of the ball is:
Vox= Vocostheta= 20× cos30°
Vox= 17.32m/s
Time taken to coverR=35.35m with 17.32m/s will be:
t=R/Vox= 35.35/17.32
t= 2.04seconds
b)Speed required to cover 15.35m at 2.04seconds
Vxreciever= d/t = 15.35/2.04 = 7.52m/s