Answer:
First list
A. CH3OH----hydrogen bonds
CH4----dispersion forces
CaCO3---ionic bonds
C6H14----dispersion forces
Second list
H2O------ liquid----hydrogen bonds
C2H2----gas---dispersion forces
CCl4---liquid---dispersion forces
KCl----solid---ionic bonds
Explanation:
For every compound, the intermolecular forces decide whether the substance will be solid liquid or gas. Molecules are known to associate with each other in any particular state of matter. These molecules are held together by different intermolecular interactions with varying degrees of strength. The strength of the intermolecular interaction between the molecules of a substance will decide if the substance will be a solid, liquid or gas.
When the intermolecular forces are very strong such as in ionic solids and covalent network solids, the substance exists as a solid. When the intermolecular forces are not so strong such as dispersion forces and hydrogen bonds, the substance exists as a liquid. However, very weak intermolecular dispersion forces are found in gases hence the molecules are relatively free when compared to molecules of liquids and solids.
Answer:
Not doubled
Explanation:
The equation below represent the ideal gases relationship
PV ÷ T = constant
Here
P denotes pressure,
V denotes volume,
T denotes temperature in degrees Kelvin
Now
20 ° c = 273 + 20
= 293 K
And,
40 ° c = 313 K
So,
V = Vo. 313 K ÷ 293 K = 1.07 Vo
So, the volume is NOT doubled.
In the case when the temperature would be determined in degrees celsius at 0 degrees so the volume would be zero
1 pm = 10∧-10 cm
Therefore, 230 pm is equivalent to 2.3 ×10∧-8 cm.
Atom is in the shape of a sphere,
The volume of a sphere is given by 4/3πr³
Thus, volume of the atom = 4/3π( 2.3 ×10∧-8)³
= 4/3 (3.142 ×12.167×10∧-24
= 5.096 ×10∧-23 cm³
but 1m³= 1000000cm³
Therefore, the volume of the atom = 5.096 ×10∧-29 m³
Answer:
This is just my guess, but since opposites attract, then im guessing that alikes repel each other. So, they will go away from each other when the ball is released (I think).
Explanation:
Hope this helps! If it did, please mark it as brainliest! It would help a lot! Thanks! :D
Explanation:
Molarity is defined as number of moles per liter of solution.
Mathematically, molarity = 
It is given that molarity is 0.0800 M and volume is 50.00 mL or 0.05 L.
molarity = 
0.0800 M = 
no. of moles = 1.6 mol
Therefore, molar mass of cupric sulfate pentahydrate is 249.68 g/mol. So, calculate the mass as follows.
No. of moles = 
mass in grams = 
= 
= 399.488 g
Thus, we can conclude that 399.488 g of cupric sulfate pentahydrate are needed to prepare 50.00 mL of 0.0800M CuSO4× 5H2O.