Answer: is C
Explanation:
Both the atomic mass and the atomic number increase from left to right
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
The correct answer among the choices listed above is option D. The average kinetic energy of water molecules as water freeze <span>decreases as water releases energy to its surroundings. Energy is released as the molecules go into a more condensed phase which is the solid.</span>
Answer:
The final volume is 1.6 L.
Explanation:
It is given that,
A diver has a lung capacity of 2.4 L when the pressure is 0.8 atm. We need to find the volume of the diver’s lungs when the pressure changes to 1.2 atm. Let V₂ is volume.
It is based on Boyle's law. According to this law,

K is constant


So, the final volume is 1.6 L.
Dinosaurs, cavemen, sabertooth tiger