Thomson realized that the accepted model of an atom did not account for negatively or positively charged particles. Therefore, he proposed a model of the atom which he likened to plum pudding. ... Rutherford with the assistance of Ernest Marsden and Hans Geiger performed a series of experiments using alpha particles.
<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
Answer : The volume of pure diamond is 
Explanation : Given,
Density of pure carbon in diamond = 
Moles of pure diamond = 23.7 moles
Molar mass of carbon = 12 g/mol
First we have to calculate the mass of carbon or pure diamond.
Molar mass of carbon = 12 g/mol

Now we have to calculate the volume of carbon or pure diamond.
Formula used:

Now putting all the given values in this formula, we get:

Volume = 
As we know that:

So,
Volume = 
Volume = 
Therefore, the volume of pure diamond is 
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Answer:
Theories
Explanation:
It is theories because it was a generalistee abstract or thinking generalising the principle of fact about Earth tectonic plates ,it was formulated and concluded as plate tectonic theories after many findings. The theories conclude that the Earth has an outer layer called lithosphere and lies overly a plastic layer called asthenosphere. The lithosphere is divided into several plates and they move close to each other where they diverge, converge or slip over one another.