<u>Answer:</u> The tendency of an element to react is closely related to the number of valence electrons in the element.
<u>Explanation:</u>
Chemical reactivity is defined as the tendency of an element to loose of gain electrons.
Metals tend to loose electrons and so their chemical reactivity is the tendency to loose electrons.
Non-metals tend to gain electrons and so their chemical reactivity is the tendency to gain electrons.
The number of electrons that an element will loose or gain depends on the number of valence electrons present around that element.
<u>For Example:</u> Chlorine has 7 valence electrons and need 1 electron to complete its octet, whereas sulfur has 6 valence electrons and need 2 electrons to complete its octet.
So, chlorine will gain 1 electron easily than sulfur and thus, is more reactive than sulfur.
Hence, the tendency of an element to react is closely related to the number of valence electrons in the element.
Answer:
Answer in explanation
Explanation:
The reactivity or passiveness of an element depends solely on how close it is to attain a noble gas configuration. This means the closer an element is to attain a noble gas configuration, the greater its reactivity in both direction, positively or negatively.
Alkali metals belong to group 1 of the periodic table while halogens belong to group 17 of the periodic table. This means they are just one electron away from achieving the stability of a noble gas configuration. While alkali metals need to lose one electron to form a univalent positive ion, halogens news to gain one electron to form a univalent negative ion.
They tend to go about this vigorously and as such undergo several chemical reactions because of that single electron they neeed.
Freak you poop but moms swig
The first bubble after "water evaporates" should be something along the lines of that the water condenses in the clouds and then the following bubble should be that the water is released from the clouds. Does that make sense to you?