Answer:
The volume (mL) of 0.135 M NaOH that is required to neutralize 13.7 mL of 0.129 M HCl is 13.1 mL (option b).
Explanation:
The reaction between an acid and a base is called neutralization, forming a salt and water.
Salt is an ionic compound made up of an anion (positively charged ion) from the base and a cation (negatively charged ion) from the acid.
When an acid is neutralized, the amount of base added must equal the amount of acid initially present. This base quantity is said to be the equivalent quantity. In other words, at the equivalence point the stoichiometry of the reaction is exactly fulfilled (there are no limiting or excess reagents), therefore the numbers of moles of both will be in stoichiometric relationship. So:
V acid *M acid = V base *M base
where V represents the volume of solution and M the molar concentration of said solution.
In this case:
- V acid= 13.7 mL= 0.0137 L (being 1,000 mL= 1 L)
- M acid= 0.129 M
- V base= ?
- M base= 0.135 M
Replacing:
0.0137 L* 0.129 M= V base* 0.135 M
Solving:

V base=0.0131 L = 13.1 mL
<u><em>
The volume (mL) of 0.135 M NaOH that is required to neutralize 13.7 mL of 0.129 M HCl is 13.1 mL (option b).</em></u>
Answer:
1. The pH of 1.0 M trimethyl ammonium (pH = 1.01) is lower than the pH of 0.1 M phenol (5.00).
2. The difference in pH values is 4.95.
Explanation:
1. The pH of a compound can be found using the following equation:
![pH = -log([H_{3}O^{+}])](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20)
First, we need to find [H₃O⁺] for trimethyl ammonium and for phenol.
<u>Trimethyl ammonium</u>:
We can calculate [H₃O⁺] using the Ka as follows:
(CH₃)₃NH⁺ + H₂O → (CH₃)₃N + H₃O⁺
1.0 - x x x
![Ka = \frac{[(CH_{3})_{3}N][H_{3}O^{+}]}{[(CH_{3})_{3}NH^{+}]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5B%28CH_%7B3%7D%29_%7B3%7DN%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5B%28CH_%7B3%7D%29_%7B3%7DNH%5E%7B%2B%7D%5D%7D)

By solving the above equation for x we have:
x = 0.097 = [H₃O⁺]
<u>Phenol</u>:
C₆H₅OH + H₂O → C₆H₅O⁻ + H₃O⁺
1.0 - x x x
![Ka = \frac{[C_{6}H_{5}O^{-}][H_{3}O^{+}]}{[C_{6}H_{5}OH]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DOH%5D%7D)


Solving the above equation for x we have:
x = 9.96x10⁻⁶ = [H₃O⁺]
![pH = -log([H_{3}O^{+}]) = -log(9.99 \cdot 10^{-6}) = 5.00](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20%3D%20-log%289.99%20%5Ccdot%2010%5E%7B-6%7D%29%20%3D%205.00%20)
Hence, the pH of 1.0 M trimethyl ammonium is lower than the pH of 0.1 M phenol.
2. The difference in pH values for the two acids is:
Therefore, the difference in pH values is 4.95.
I hope it helps you!
Answer:
warm, dry downslope wind affecting Southern California - Santa Ana wind
a seasonally changing wind- monsoon
wind blowing from a valley up a mountain slope - valley breeze
generated by cold thunderstorm downdrafts - haboob
Explanation:
The Santa Ana wind occurs in early autumn. They bring hot and dry weather to areas around the South-West coast. They move at high speeds, affecting most parts of Southern California.
Monsoon is a seasonal wind that blows across Southern Asia. It usually blows in summer. It is a a seasonally changing wind.
Valley breeze is an example of convection current in nature. It is produced by rapid warming of the valley floor leading to the expansion of air making it to flow up the slopes. At night, radiation from the surface cools the slopes. This leads to the rise of cooler and denser air which drains into the valley.
Haboob is generated by cold thunderstorm downdrafts. It is associated with large sandstorms and dust storms.
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.