Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation:
Answer: Option (A) is the correct answer.
Explanation:
Force acting on a dam is as follows.
F =
.......... (1)
Now, when we double the depth then it means H is increasing 2 times and then the above relation will be as follows.
F' = 
F' =
........... (2)
Now, dividing equation (1) by equation (2) as follows.
=
Cancelling the common terms we get the following.
=
4F = F'
Thus, we can conclude that if doubled the depth of the dam the hydrostatic force will be 4F.
The Elements (The Periodic Table.)
<h2>Answer:</h2>
<u>Temperature dependency is responsible for the process that hot water freeze faster than cold water.</u>
<h2>Explanation:</h2>
The effect given above is called Mpemba Effect. According to this idea hot water freezes more quickly as compared to cold water. But until now there is no convincing explanation for this strange phenomenon. One idea is that hot containers make better thermal contact with a refrigerator and so conduct heat more efficiently because a good conductor is good fro the transfer of heat. Another idea about this effect is that warm water evaporates more quickly and since this is an endothermic process, it cools the water making it freeze more quickly.