1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
8

Physics. Need help. Brainlieast answer for most/ all of the answers answered

Physics
1 answer:
Mumz [18]3 years ago
3 0

<u>ALL of the following work assumes NO AIR RESISTANCE:</u>

1). an object moving under the influence of only gravity, and not in orbit;  its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²

2). a parabola

3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.

4). a). the one that was thrown horizontally; b). both  hit the ground at the same time; c). both hit the ground with the same vertical velocity

5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion

6). a). 1.8 seconds;   b). 13.1 meters;   c). 17.6 m/s down;   d). 7.3 m/s; gravity has no effect on horizontal motion

7). 45 m/s

8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand

9). a). 4.49 m/s;  b). 29.7 m/s

10). 7.24 meters

11).  700 meters

12).  A). 103.7 meters ( ! she's in big trouble ! );     B).  17.5 meters

You might be interested in
So far in your life, you may have assumed that as you are sitting in your chair right now, you are not accelerating. However, th
tia_tia [17]

Answer:

a) a=33.73mm/s^{2}

b) mg>N

c) \%_{change}=0.343\%

d) a=24.07mm/s^{2}

Explanation:

In order to solve part a) of the problem, we can start by drawing a free body diagram of the presented situation. (see attached picture).

In this case, we know the centripetal acceleration is given by the following formula:

a_{c}=\omega ^{2}r

where:

\omega=\frac{2\pi}{T}

we know the period of rotation of the earth is about 24 hours, so:

T=24hr*\frac{3600s}{1hr}=86400s

so we can now find the angular speed:

\omega=\frac{2\pi}{86400s}

\omega=72.72x10^{-6} rad/s^{2}

So the centripetal acceleration will be:

a_{c} =(72.72x10^{-6} rad/s^{2})^{2}(6478x10^{3}m)

which yields:

a_{c}=33.73mm/s^{2}

b)

In order to answer part b, we must draw a free body diagram of us sitting on a chair. (See attached picture.)

So we can do a sum of forces in equilibrium:

\sum F=0

so we get that:

N-mg+ma_{c} = 0

and solve for the normal force:

N=mg-ma_{c}

In this case, we can clearly see that:

mg>mg-ma_{c}

therefore mg>N

This is because the centripetal acceleration is pulling us upwards, that will make the magnitude of the normal force smaller than the product of the mass times the acceleration of gravity.

c)

So let's calculate our weight and normal force:

Let's say we weight a total of 60kg, so:

mg=(60kg)(9.81m/s^{2})=588.6N

and let's calculate the normal force:

N=m(g-a_{c})

N=(60kg)(9.81m/s^{2}-33.73x10^{-3}m/s^{2})

N=586.58N

so now we can calculate the percentage change:

\%_{change} = \frac{mg-N}{mg}x100\%

so we get:

\%_{change} = \frac{588.6N-586.58N}{588.6N} x 100\%

\%_{change}=0.343\%

which is a really small change.

d) In order to find this acceleration, we need to start by calculating the radius of rotation at that point of earth. (See attached picture).

There, we can see that the radius can be found by using the cos function:

cos \theta = \frac{AS}{h}

In this case:

cos \theta = \frac{r}{R_{E}}

so we can solve for r, so we get:

r= R_{E}cos \theta

in this case we'll use the average radius of earch which is 6,371 km, so we get:

r = (6371x10^{3}m)cos (44.4^{o})

which yields:

r=4,551.91 km

and now we can calculate the acceleration at that point:

a=\omega ^{2}r

a=(72.72x10^{-6} rad/s)^{2}(4,551.91x10^{3}m

a=24.07 mm/s^{2}

5 0
3 years ago
lasie4. A 4 kg object is displaced to the right by a distance of 12 m underthe influence of the following forces: a 17 Nforce pu
Oksanka [162]

The work done by a constant force in a rectilinear motion is given by:

W=Fd\cos\theta

where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.

In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:

\begin{gathered} W=(17)(12)\cos0+(36)(12)\cos30 \\ W=578.123 \end{gathered}

Therefore, the total work done is 578.123 J and the answer is option E

6 0
1 year ago
Which snack is an excellent choice for protein, B vitamins, vitamin E, and healthful fat
igomit [66]
Fruits and frozen fruit bars is the correct answer.
7 0
3 years ago
Read 2 more answers
How many innings are in a regulation softball game?
Ilia_Sergeevich [38]

Answer:

A regulation game consists of 7 innings unless extended because of a tie score or unless shortened because the home team needs none or only a fraction of its 7th inning or unless 1 team is leading by 10 runs after 5 innings.

Explanation:

3 0
3 years ago
You use a lever to lift a heavy tree branch you apply a force of 50 n and the lever lifts the branch
valentinak56 [21]

1.8 is the mechanical advantage of the lever.

<h3>Definition of mechanical advantage</h3>

The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.

The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.

Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.

In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.

Mechanical advantage= 90/50 =1.8

Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?

To learn more about the Mechanical advantage visit the link

brainly.com/question/16617083

#SPJ4

5 0
1 year ago
Other questions:
  • A soccer ball of diameter 22.6cm and mass 426g rolls up a hill without slipping, reaching a maximum height of 5m above the base
    14·1 answer
  • The neurons that select a particular motor program are the __________.
    11·1 answer
  • A proton is a subatomic particle that carries a ___________ charge
    10·1 answer
  • William made one comment to an employee recently assigned to his team complimenting her on her dress. Later she was reprimanded
    6·2 answers
  • 2,000 kg car moving at 5 m/sec to east collides with 6,000 kg car moving 3 m/sec to west. If cars couple together, what is their
    10·1 answer
  • Im not going to lie, this is a physics Q right here<br> plz guys im being serious i need help
    11·1 answer
  • Two condition required for work done​
    14·1 answer
  • Suppose a spring compresses by 5cm if you put a 250 gram weight on top of it. How
    14·1 answer
  • As a bicycle pump inflates a tyre, it pressure rises from 30 kPa to 40 kPa at constant temperature of 30 °C. By assuming the air
    5·1 answer
  • True or false: the most appropriate weights to use in the wacc are book value weights.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!