Answer:
a) [H₃O⁺] = 1.8x10⁻⁵ M
b) pH = 4.75
c) % rxn = 3.5x10⁻³ %
Explanation:
a) The dissociation reaction of HCN is:
HCN(aq) + H₂O(l) ⇄ H₃O⁺(aq) + CN⁻(aq)
0.5 M - x x x
The dissociation constant from the above reactions is given by:
By solving the above quadratic equation we have:
x = 1.75x10⁻⁵ M = 1.8x10⁻⁵ M = [H₃O⁺] = [CN⁻]
Hence, the [H₃O⁺] is 1.8x10⁻⁵ M.
b) The pH is equal to:
Then, the pH of the HCN solution is 4.75.
c) The % reaction is the % ionization:
Therefore, the % reaction or % ionization is 3.5x10⁻³ %.
I hope it helps you!
Explanation:
please mark me as brainlest
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide =
Mass of oxygen per gram of sulfur for sulfur dioxide =
and,
Mass of oxygen per gram of sulfur for sulfur trioxide =
Mass of oxygen per gram of sulfur for sulfur trioxide =
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Answer:
This solution has a volume of 98.4 mL
Explanation:
Step 1: Data given
Molarity of AgClO4 solution = 1.27 mol/L
Number of moles AgClO4 = 125 mmol = 0.125 mol
Molar mass of AgClO4= 207.32 g/mol
Step 2: Calculate volume of the 1.27 M solution
Molarity = moles / volume
Volume = moles / molarity
Volume = 0.125 moles / 1.27 mol /L
Volume = 0.0984 L = 98.4 mL
This solution has a volume of 98.4 mL