intrusive
intrusive rocks have larger crystals
39.25 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂ + O₂ → 2 H₂O
Now we calculate the number of moles of each reactant:
number of moles = mass / molar weight
number of moles of H₂ = 14.8 / 2 = 7.4 moles
number of moles of O₂ = 34.8 / 32 = 1.09 moles
We see from the chemical reaction that 2 moles of H₂ will react with 1 mole of O₂ so 7.4 moles of H₂ will react with 3.7 moles of O₂ but we only have 1.09 moles of O₂ available. The O₂ will be the limiting reactant. Knowing this we devise the following reasoning:
if 1 moles of O₂ produces 2 moles of H₂O
then 1.09 moles of O₂ produces X moles of H₂O
X = (1.09 × 2) / 1 = 2.18 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 2.18 × 18 = 39.25 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
#learnwithBrainly
As the temperature is lowered matter is more likely to exist in the solid state
Answer:
32(molecular mass has no unit )
Explanation:
(16)(o2)
16×2
=32
The volume of oxygen required to burn 12.00 L ethane is calculated as follows
find the moles of C2H6 used
At STP 1 mole is always = 22.4 L, what about 12.00 L
= ( 12.00L x 1 moles) 22.4 L = 0.536 moles
write the reacting equation
2C2H6+ 7O2 = 4CO2 + 6H2O
by use of mole ratio between C2H6 :O2 which is 2:7 the moles of O2
= 0.536 x7/2= 1.876 moles
again at STP 1mole = 22.4 L what about 1.876 moles
= 22.4 L x 1.876 moles/ 1 mole = 42.02 L