Since a pH of 3 is three numbers higher than a pH of 6, we can find the change in acidity by taking 10 to the third power. The solution with a pH of 3 is 1000 times more acidic than the solution with a pH of 6.
Answer:
1.87x10⁻³ M SO₄²⁻
Explanation:
The reaction of SO₄²⁻ with Ba²⁺ (From Ba(NO₃)₂) is:
SO₄²⁻(aq) + Ba²⁺(aq) → BaSO₄(s)
<em>Where 1 mole of SO₄²⁻ reacts per mole of Ba²⁺</em>
<em />
To reach the end point in this titration, we need to add the same moles of Ba²⁺ that the moles that are of SO₄²⁻.
Thus, to find molarity of SO₄²⁻ we need to find first the moles of Ba²⁺ added (That will be the same of SO₄²⁻). And as the volume of the initial sample was 100mL we can find molarity (As ratio of moles of SO₄²⁻ per liter of solution).
<em>Moles Ba²⁺:</em>
7.48mL = 7.48x10⁻³L ₓ (0.0250moles / L) = 1.87x10⁻⁴ moles of Ba²⁺ = Moles of SO₄²⁻
<em>Molarity SO₄²⁻:</em>
As there are 1.87x10⁻⁴ moles of SO₄²⁻ in 100mL = 0.1L, molarity is:
1.87x10⁻⁴ moles of SO₄²⁻ / 0.1L =
<h3> 1.87x10⁻³ M SO₄²⁻</h3>
Answer:
Never pour water into acid but acid into water
Explanation:
If water is poured into extremely concentrated acid/bases, the rate of volatility and exothermic reaction is too rapid and might cause a chemical eruption, leading to acid burns.
Safety precautions hence dictate the reverse is practiced.
I believe this is a clear answer.
Answer:
The amount of sodium is 32 mg per cracker, 49 mg per pretzel and 68 mg per cookie.
Explanation:
Let's assume amount of sodium is x mg per cracker, y mg per pretzel and z mg per cookie.
So, the following three equations can be written as per given information:
x+y+z = 149 ........(1)
8y+8z = 936 ........(2)
6x+7y = 535 .........(3)
From equation- (2), y+z =
= 117
By substituting the value of (y+z) in equation- (1) we get,
x = 149-(y+z) = 149-117 = 32
By substituting the value of x into equation- (3) we get,
y =
= 49
By substituting the value of y into equation- (2) we get,
z = (117-49) = 68
So, the amount of sodium is 32 mg per cracker, 49 mg per pretzel and 68 mg per cookie.