Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Answer:
β = 114 db
Explanation:
The intensity of sound in decibles is
β = 10 log 
in most cases Io is the hearing threshold 1 10-12 W / cm²
let's calculate the intensity of each instrument
I / I₀ = 10 (β / 10)
I = I₀ 10 (β / 10)
trumpet
I1 = 1 10⁻¹² 10 (94/10)
I1 = 2.51 10⁻³ / cm²
Thrombus
I2 = 1 10⁻¹² 10 (107/10)
I2 = 5.01 10-2 W / cm²
low
I3 =1 1-12 (113/10) W/cm²
I3 = 1,995 10-1 W / cm²
when we place the three instruments together their sounds reinforce
I_total = I₁ + I₂ + I₃
I_ttoal = 2.51 10-3 + 5.01 10-2 + 1.995 10-1
I_total = 0.00251 + 0.0501 + 0.1995
I_total = 0.25211 W / cm²
let's bring this amount to the SI system
β = 10 log (0.25211 / 1 10⁻¹²)
β = 114 db
It Increases. I just took a quiz with the same question.
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω