Answer:
The change of the momentum of the ball is
Explanation:
We should find
(1)with
the initial momentum and
the final momentum. Linear momentum is defined as
, using that on (1):
(2)
It's important to note that momentum and velocity are vectors and direction matters, so if +x direction is the direction towards the wall and the -x direction away the wall
and
so (2) becomes:

Answer:
3.10 mole of C3H8O change in entropy is 89.54 J/K
Explanation:
Given data
mole = 3.10 moles
temperature = -89.5∘C = -89 + 273 = 183.5 K
ΔH∘fus = 5.37 kJ/mol = 5.3 ×10^3 J/mol
to find out
change in entropy
solution
we know change in entropy is ΔH∘fus / melting point
put these value so we get change in entropy that is
change in entropy 5.3 ×10^3 / 183.5
change in entropy is 28.88 J/mol-K
so we say 1 mole of C3H8O change in entropy is 28.88 J/mol-K
and for the 3.10 mole of C3H8O change in entropy is 3.10 ×28.88 J/K
3.10 mole of C3H8O change in entropy is 89.54 J/K
Work = force x distance
200 Newtons x 20 meters
= 4,000 Joules
Answer:
The momentum would be doubled
Explanation:
The magnitude of the momentum of the freight train is given by:

where
m is the mass of the train
v is its speed
In this problem, we have that the speed of the train is unchanged, while the mass of the train is doubled:

therefore, the new momentum is

so, the momentum has also doubled.
Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]