Steps 1 and 2)
The variables are W = work, P = power, and t = time. In this case, W = 9514 joules and P = 347 watts.
The goal is to solve for the unknown time t.
-----------------------
Step 3)
Since we want to solve for the time, and we have known W and P values, we use the equation t = W/P
-----------------------
Step 4)
t = W/P
t = 9514/347
t = 27.4178674351586
t = 27.4 seconds
-----------------------
Step 5)
The lawn mower ran for about 27.4 seconds. I rounded to three sig figs because this was the lower amount of sig figs when comparing 9514 and 347.
-----------------------
Note: we don't use the mass at all
The electrostatic force between two charges q1 and q2 is given by

where

is the Coulomb's constant and r is the distance between the two charges.
If we use F=19.2 N and q1=q2=-3.0 C, we can find the value of r, the distance between the two charges by re-arranging the previous formula:
Answer:
Only option A is correct
Explanation:
From the concept of Doppler effect, only speed matters. Thus, the faster a vehicle is moving, the closer together the sound waves get compressed and the higher the frequency. For example, for a very fast vehicle traveling at the speed of sound; the compressions are all right on top of each other. Thus, faster speed means closer compressions and higher frequencies. Hence, option only option A must be true because X is a higher frequency and so it must be going faster. The distance to the person will affect the volume but will not the pitch so Option B is not correct. Option C too is not correct because It doesn’t matter whether you are speeding up or slowing down, it only matters who is going faster. For example, from option c concept, if truck X was going 10 m/h and speeding up while truck Y was going 50 mph and slowing down, it would not meet the requirement that X has a higher frequency because only actual speed matters, not what is happening to that speed. Thus only option A is the correct answer
I believe the correct answer is 40 cm.
A. The core causes tectonic movements and the sun drives atmospheric convection.