Answer:
Explanation:
The net force on the potatoes is given by:
F= 52 - mgSintheta
F= 52- (2×9.8× Sin70°)
F = 52 -18.4
F= 33.58N
Using Newton's 2nd law
F = ma
a=F/m = 33.58/ 2 = 16.79m/s^2
Using the equation of motion:
V^2= u^2 + 2as
V^2 = 0 + 2× 16.79 x2
V^2 = 67.16
V=sqrt(68.16)
V= 8.195m/s This is the exit velocity of the potatoes
Kinetic energy, K.E = 1/2mv^2
KE= 1/2 × 2 × 8.195^2
KE = 67.16J
P=IV
V=IR
P=I(IR)
P=I²R
375=5²R
R=375/25
R=15
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.
Answer:
Option C is the untrue statement.
The answer is B. One plate slides past another.
The San Andreas Fault in California and the Alpine Fault in New Zealand are examples of transform boundaries.
Hope this helps! :)