Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
Coulomb's law states<span> that: The magnitude of the electrostatic force of interaction between two point charges is directly proportional to the scalar multiplication of the magnitudes of charges and inversely proportional to the square of the distance between them.
</span>
Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
If the tension in the rope is 160 n, - 43200 J work doen by the rope on the skier during a forward displacement of 270 m.
Given,
Tension force in the rope is (T) = 160 N
Displacement of the skier (S) = 270 m
The displacement takes place in forward direction while the direction of the tension in the rope is opposite to it.
Therefore, work done by the rope on the skier is,

⇒
Hence work done by the rope is - 43200 J.
Learn more about force problems on
brainly.com/question/26850893
#SPJ4