Answer is: (Knowing the code allows you to understand the message)
Answer:
pH = 4.8
Explanation:
A buffer is formed by a weak acid (0.145 M HC₂H₃O₂) and its conjugate base (0.202 M C₂H₃O₂⁻ coming from 0.202 M KC₂H₃O₂). The pH of a buffer system can be calculated using Henderson-Hasselbalch's equation.
![pH = pKa + log\frac{[base]}{[acid]} \\pH = -log(1.8 \times 10^{-5} )+log(\frac{0.202M}{0.145M} )\\pH=4.8](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%5C%5CpH%20%3D%20-log%281.8%20%5Ctimes%2010%5E%7B-5%7D%20%29%2Blog%28%5Cfrac%7B0.202M%7D%7B0.145M%7D%20%29%5C%5CpH%3D4.8)
Answer: Sodium bromide is an ionically bonded compound.
(NaBr: Sodium Bromide)
A low electronegativity
Explanation:
Potassium is a metal that is expected to have a very low electronegativity value.
Electronegativity is the relative tendency by which an atom attracts valence electrons in a chemical bond.
Potassium is an element in the first group on the periodic table.
The common trend is that electronegativity increases from left to right and decreases down a group.
- Potassium as metal will prefer to lose electrons rather than attracting because that will make it achieve the octet configuration that will ensure its stability.
- This is why it will have low electronegativity.
Learn more:
Electronegativity brainly.com/question/11932624
#learnwithBrainly