A condensation reaction forming a glycosidic bond. so in other words a monosaccharide joining together to form a disaccharide.
Answer:
The reaction is exothermic.
Yes, released.
The heat released is 4,08x10³ kJ.
Explanation:
For the reaction:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(l)
The ΔH is -2220 kJ, As ΔH is <0, <em>The reaction is exothermic.</em>
As the reaction is exothermic, the heat of the reaction will be <em>released.</em>
The heat released in 81,0g is:
81,0g C₃H₈×
×
= <em>4,08x10³ kJ</em>
<em>-Using molar mass of C₃H₈ to convert mass to moles and knowing that there are released 2220 kJ per mole of C₃H₈-</em>
I hope it helps!
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L
Inert means unreactive in nature or un reactive in there normal or natural state
and noble gas has there outermost shell electron filled up they complete there duplet or oclet valency state that why there inert in there natural state
<u>Answer:</u> The molarity of HCl solution is 0.262 M
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Given mass of HCl = 0.3366 g
Molar mass of HCl = 36.5 g/mol
Volume of the solution = 35.23 mL
Putting values in above equation, we get:

Hence, the molarity of HCl solution is 0.262 M.