Explanation:
answer: uuuuh so sorry if i get wrong so basically they will practice measuring different liquids. They will use a container called a graduated cylinder to measure liquids. Graduated cylinders have numbers on the side that help you determine the volume. Volume is measured in units called liters or fractions of liters called milliliters (ml).
(defently not copy and pasted)
<h3><u>Answer</u>;</h3>
Actual yield = 46.44 g
<h3><u>Explanation;</u></h3>
1 mole of water = 18 g/mol
Therefore;
The experimental yield = 2.58 moles
equivalent to ; 2.58 × 18 = 46.44 g
The theoretical value is 47 g
Percentage yield = 46.44/47 × 100%
= 98.8%
The questions asks for actual yield = 46.44 g
Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
I’m pretty sure it would be B