I just solved similar type of question. You can refer to my solution which I have attached
The slope of the road can be given as the ratio of the change in vertical
distance per unit change in horizontal distance.
- The maximum steepness of the slope where the truck can be parked without tipping over is approximately <u>54.55 %</u>.
Reasons:
Width of the truck = 2.4 meters
Height of the truck = 4.0 meters
Height of the center of gravity = 2.2 meters
Required:
The allowable steepness of the slope the truck can be parked without tipping over.
Solution:
Let, <em>C</em> represent the Center of Gravity, CG
At the tipping point, the angle of elevation of the slope = θ
Where;

The steepness of the slope is therefore;

Where;
= Half the width of the truck =
= 1.2 m
= The elevation of the center of gravity above the ground = 2.2 m



The maximum steepness of the slope where the truck can be parked is <u>54.55 %</u>.
Learn more here:
brainly.com/question/20793607
Answer:
Derived units are derived from these 7 base units. Derived units are dependent on the base units and are not independent of each other. ... Mass has SI units of kg, distance is measured in m and t has the SI unit of second. Thus, SI unit of force is kg.
Answer:
4. both blocks will both have the same amount of kinetic energy.
Explanation:
When the blocks are released free from the compression force, the spring exerts equal and opposite force on each block but the block with heavier (double) mass will attain slower ( half ) speed as compared to the lighter block according to the law of inertia. This works in synchronization to energy conservation.
Spring force is given as:

where:
length of compression in the spring
<u>We know kinetic energy is given by:</u>

Hence the kinetic energy of both the blocks is equal when they are released to move free.
The power required is 1.6 kW.
Answer:
Explanation:
Power is defined as the amount of work done on any object for a given time interval. In other words, power is the amount of force required to move an object in a given period of time.
Power = Work done / time taken for that work done.
Here the force is given as 800 N and the displacement is given as 2.5 m, while the time required for the displacement is given as 1.22 seconds.
So the power will be ratio of the product of force acting on the weightlifter, displacement of the weight to the time taken for that displacement.
Power = (800×2.5)/1.22 =1639 W
So the power required is 1.6 kW.