Answer:
Explanation:
a ) work done by gravitational force
= mg sinθ ( d + .21)
Potential energy stored in compressed spring
= 1/2 k x²
= .5 x 431 x ( .21 )²
= 9.5
According to conservation of energy
mg sinθ ( d + .21) = 9.5
3.2 x 9.8 x sin 30( d + .21 ) = 9.5
d = 40 cm
b )
As long as mg sin30 is greater than kx ( restoring force ) , there will be acceleration in the block.
mg sin30 = kx
3.2 x 9.8 x .5 = 431 x
x = 3.63 cm
When there is compression of 3.63 cm in the spring , block will have maximum velocity. there after its speed will start decreasing.
Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.