Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Answer:
Regardless of how the steps are documented, the goal of scientific method is to gather data that will validate or invalidate a cause and effect relationship.
Hope this helped!!!
The force depends on the mass of both objects and the distance between them
F = G*m1*m2/r^2
So the force has a linear connection with the mass of both objects and a quadratic connection with the distance between the center of masses
Complete question:
It is measured that 3/4 of a body's volume is submerged in oil of density 800kg/m³. What is the specific gravity of oil?
Answer:
The specific gravity of the oil is 0.8.
Explanation:
Given;
density of the oil,
= 800 kg/m³
density of water,
= 1000 kg/m³
The specific gravity of any substance is the ratio of the substance density to the density of water.
Specific gravity of the oil = density of the oil / density of water
Specific gravity of the oil = 800/1000
Specific gravity of the oil = 0.8
Therefore, the specific gravity of the oil is 0.8.
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.