1. 31°
2. 59°
3. 90°
4. 10
5 it’s been a while since I did geometry and my brain is fried. Please accept the priors
6
If you walk 2 miles in 1/2 an hour, each mile took 15 minutes to walk. Add one more mile and that equals 45 minutes.
It will take 45 minutes to walk 3 miles.
It would round up to 1,244,000
The equation to represent the area of the triangle would be:
y = 1/2(x²) - (7/2)x
The equation to represent the perimeter of the triangle would be:
y = 3x - 6
The solutions to the system would be (12, 30) or (1, -3). The only viable solution is (12, 30).
Explanation
The area of a triangle is found using the formula
A = 1/2bh
For our triangle, b = x and h = x-7, so we have:
A = 1/2(x)(x-7)
A = 1/2(x²-7x)
A = 1/2(x²) - (7/2)x
We will replace A with y, so we have:
y = 1/2(x²) - (7/2)x
The perimeter of a triangle is found by adding together all sides, so we have:
P = (x-7) + x + (x+1)
Combining like terms we get:
P = 3x - 6
We will replace P with y, so we have:
y = 3x - 6
Since both equations have y isolated on one side, it will be easy to use substitution to solve the system:
3x - 6 = 1/2(x²) - (7/2)x
It's easier to work with whole numbers, so we will multiply everything by 2:
6x - 12 = x² - 7x
We want all of the variables on one side, so we will subtract 6x:
6x - 12 - 6x = x² - 7x - 6x
-12 = x² - 13x
When solving quadratics, we want the equation equal to 0, so we will add 12:
-12+12 = x² - 13x + 12
0 = x² - 13x + 12
This is easy to factor, as there are factors of 12 that sum to -13; -12(-1) = 12 and -12+-1 = -13:
0 = (x-12)(x-1)
Using the zero product property, we know that either x-12=0 or x-1=0; therefore x=12 or x=1.
Putting these back into our equation for perimeter (the simplest one) we have:
y = 3(12)-6 = 36-6 = 30; (12, 30);
y = 3(1) - 6 = 3 - 6 = -3; (1, -3)
We cannot have a negative perimeter, so the only viable solution is (12, 30).
Hi, all we need to do is to divide the number of brownies by the number of students, and we will get the amount of how many would each student get.
26/15 = 1,73 brownies per student.