Pretty sure the answer you're looking for is A
Use the Euclidean algorithm to express 1 as a linear combination of
and
.
a.
because
77 = 1*52 + 25
52 = 2*25 + 2
25 = 12*2 + 1
so we can write
1 = 25 - 12*2 = 25*25 - 12*52 = (77 - 52)(77 - 52) - 12*52 = 77^2 - 2*52*77 + 52^2 - 12*52
Taken modulo 77 leaves us with

b. First,
, so really we're looking for the inverse of 25 mod 52. We've basically done the work in part (a) already:
1 = 25*25 - 12*52
Taken modulo 52, we're left with

c. The EA gives
71 = 1*53 + 18
53 = 2*18 + 17
18 = 1*17 + 1
so we get
1 = 18 - 17 = 3*18 - 53 = 3*71 - 4*53
so that taken module 71, we find

d. Same process as with (b). First we have
, and we've already shown that
1 = 3*18 - 53
which means, taken modulo 53, that

Answer:
9/5
Step-by-step explanation:
Answer:
Distance between A and B is 2672 km.
Step-by-step explanation:
Since one city B is having latitude of 23° and other town is having latitude of 47°.Radius of Earth has been given as 6380 km.
Therefore arc A from x-axis will be A = 2πr(∅/360) = 2×3.14×6380×(47/360)
= 5230.90 km
Now arc B from x-axis = 2πr(∅'/360) = 2×3.14×6380(23/360) = 2559.80 km
Therefore distance between them = 5230.9-2559.8 = 2671.9 ≅ 2672 km
Now we will rewrite the arc length formula in radians.
arc A = r×(∅×π/180)
arc A = 6380×(47×π/180) = 1665.9π
arc B = 6380×(23×π/180) = 815.22π
Now the distance between A and B = 850.68π