The first most obvious thing to note is when naming transitional metals, you have to state its charge with roman numerals (except for 1 if I remember correctly). For example, Iron (lll), iron has a charge of 3.
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!
Using the exponential decay model; we calculate "k"
We know that "A" is half of A0
A = A0 e^(k× 5050)
A/A0 = e^(5050k)
0.5 = e^(5055k)
In (0.5) = 5055k
-0.69315 = 5055k
k = -0.0001371
To calculate how long it will take to decay to 86% of the original mass
0.86 = e^(-0.0001371t)
In (0.86) = -0.0001371t
-0.150823 = -0.0001371 t
t = 1100 hours