I'm not 100% sure but I'm leaning towards D. :)
We know that:
Molar Mass H2O: 18 g/mol
<span>Molar Mass of Eugenol: 164 g/mol </span>
<span>Boiling point of H2O: 100 degrees C </span>
<span>Boiling point of Eugenol: 254 degrees C </span>
<span>Density of water: 1.0 g/mL </span>
<span>Density of Eugenol: 1.05 g/mL </span>
<span>Using formula:
V= [mole fraction x molar mass] / density </span>
<span>mH20: 0.9947 * 18
= 17.9046 / 1 g/mL
= 17.9046 </span>
<span>morg: 0.0053 * 164
= 0.8692/ 1.05 g/mL
= 0.8278 </span>
<span>V% = Vorg/(Vorg + VH2O) * 100 </span>
<span>(0.8278/18.7324) * 100 = 4.419% </span>
Yotal volume = 30 mL; therefore,
<span>0.0442 = (volume eugenol/30) </span>
<span>(m eug/mH2O) = (peug*164/pH2O*18) </span>
<span>(m eug/30) = (4*164/760*18) </span>
<span>m eug = about 1.44g and </span>
<span>
volume = mass/density
= 1.44/1.05
= about 1.37 mL </span>
Answer:
The answer is B "The lithosphere is characterized by its physical state while the crust is characterized by its composition (mostly oxygen, aluminum, and silicon)
The correct answer is option a, that is, it gets broken down.
A set of metabolic reactions and procedures, which occurs in the cells of organisms to transform biochemical energy from nutrients into ATP, and then discharge waste components is known as cellular respiration. At the time of cellular respiration, a molecule of glucose gets dissociated slowly into water and carbon dioxide. With it, some of the ATP is generated directly in the reactions, which transform glucose.
A magical or medicinal potion/solution