Answer:
Maximum height, h = 10 m
Explanation:
It is given that,
Mass of golf ball, m = 45 g = 0.045 kg
The ball comes down on a tree root and bounces straight up with an initial speed of 14.0 m/s.
We need to find the height the ball will rise after the bounce. It is based on the conservation of energy such that,

h is maximum height raised by the ball

So, the ball will raised to a height of 10 meters.
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m
26°F
.............................................................
Answer:
(A) 2.4 N-m
(B) 
(C) 315.426 rad/sec
(D) 1741.13 J
(E) 725.481 rad
Explanation:
We have given mass of the disk m = 4.9 kg
Radius r = 0.12 m, that is distance = 0.12 m
Force F = 20 N
(a) Torque is equal to product of force and distance
So torque
, here F is force and r is distance
So 
(B) Moment of inertia is equal to 
So 
Torque is equal to 
So angular acceleration 
(C) As the disk starts from rest
So initial angular speed 
Time t = 4.6 sec
From first equation of motion we know that 
So 
(D) Kinetic energy is equal to 
(E) From second equation of motion
