Answer:
number (12 is c) (13 is 5) (14 is 5)
Explanation:
Answer:
- According to the law <br> Mass of reactants = mass of product, here <br> `underset(10 g)(CaCO_(3))rarr underset(4.4 g)(CO_(2))+underset(x)(CaO)` <br> Hence, x = 10 g - 4.4 g = 5.6 g <br> Which is mass of CaO.d
- In the first compound <br> Hydrogen = 5.93 % <br> Oxygen = `(100-5.93)% = 94.07 %` <br> In the second compound <br> Hydrogen = 11.2 % <br> Oxygen `= (100-11.2)%=88.8%` <br> In the first compound the number of parts by mass of oxygen that combine with one part by mass of hydrogen `=(94.07)/(5.93)=15.86` parts ...
- (The ratio of Cu combining with fixed weight of oxygen in black and red oxide is 1 : 2 respectively. Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.) {Check something more in the above attachment!}
- Refer to the above attachment
Explanation:
<em>Mark </em><em>this </em><em>answer </em><em>as </em><em>brainlest </em><em>answer</em><em>!</em><em>!</em>
<span>By definition, summer is the portion of the year in which the hemisphere is tilted toward the sun, so that sunlight strikes the surface more directly. When it is summer in the northern hemisphere, it is winter in the southern hemisphere, and vice versa</span>
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1