First we need to find the slope.
slope = (y2 - y1) / (x2 - x1)
slope = (-5 - 2) / (5 - -3)
slope = (-7) / (5 + 3)
slope = -7/8
.
Point-slope form:
y - y1 = m(x - x1)
y - 2 = (-7/8)(x - -3)
y - 2 = (-7/8)(x + 3)
y - 2 = (-7/8)x - 21/8
y = (-7/8)x - 21/8 + 2
y = (-7/8)x - 21/8 + 16/8
y = (-7/8)x - 5/8
Answer:
4r to the power of 2 - 3r +1
<span>Selection A is correct</span>
6a. 1 - 2sin(x)² - 2cos(x)² = 1 - 2(sin(x)² +cos(x)²) = 1 - 2·1 = -1
6c. tan(x) + sin(x)/cos(x) = tan(x) + tan(x) = 2tan(x)
6e. 3sin(x) + tan(x)cos(x) = 3sin(x) + (sin(x)/cos(x))cos(x) = 3sin(x) +sin(x) = 4sin(x)
6g. 1 - cos(x)²tan(x)² = 1 - cos(x)²·(sin(x)²)/cos(x)²) = 1 -sin(x)² = cos(x)²