The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
total number of electron in 1 litter is 3.34 ×
electron
Explanation:
given data
mass per mole = 18 g/mol
no of electron = 10
to find out
how many electron in 1 liter of water
solution
we know molecules per gram mole is 6.02 ×
molecules
no of moles is 1
so
total number of electron in water is = no of electron ×molecules per gram mole × no of moles
total number of electron in water is = 10 × 6.02 ×
× 1
total number of electron in water is = 6.02×
electron
and
we know
mass = density × volume ..........1
here we know density of water is 1000 kg/m
and volume = 1 litter = 1 ×
m³
mass of 1 litter = 1000 × 1 × 
mass = 1000 g
so
total number of electron in 1 litter = mass of 1 litter × 
total number of electron in 1 litter = 1000 × 
total number of electron in 1 litter is 3.34 ×
electron
kinetic energy is converted into elastic potential energy stored in the brakes.
To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>