Answer:
6.03 mV
Explanation:
length of solenoid, L = 2 m, N = 12000, di/dt = 40 A/s,
Magnetic field due to solenoid
B = μ0 n i = μ0 N i / L
dB/dt = μ0 N / L x di / dt
dB /dt = (4 x 3.14 x 10^-7 x 12000 x 40) / 2 = 0.3 T/s
Induced emf, e = rate of change of magnetic flux
e = dΦ / dt = A x dB / dt
e = 3.14 x 0.08 x 0.08 x 0.3 = 6.03 x 10^-3 V = 6.03 mV
Answer:
D) The negatively charged electrons
Electricity passes through metallic conductors as a flow of negatively charged electrons. The electrons are free to move from one atom to another. We call them a sea of delocalised electrons. Current was originally defined as the flow of charges from positive to negative. Please give me the brainliest answer?
:) Hoped this helped!!! Have a good day!!! <3
Answer:
Transverse wave- Back and forth at right angles to the direction of the wave arrow.
longitudinal wave- bask and forth in the direction of the motion of the motion of the wave.
electromagnetic wave- two alternating waves moving at right angles to each other.
Explanation:
In a longitudinal wave, the particles vibrate at right angles in reference to the wave motion.
In a transverse wave, the particles vibrate parallel to the wave motion
Electromagnetic waves occur as a result of the interaction between two waves and are normally transverse in nature.
Apparently, the question is looking for A. electric potential energy;
but I don't think that's quite right. Electric potential difference is expressed in Joules / Coulomb which is the work to move a charge between 2 points
Example: If the electric field between, say, between 2 capacitor plates is
E = 100 Newtons / Coulomb then the work done in moving a unit of charge from the negative plate to the positive plate separted by 1 cm is
V = E * d = 100 Newtons / Coulomb * .01 meters = 1 Newton-meter / Coulomb
= 1 Joule / Coulomb which is the electric potential or potential difference
(The definition of electric potential between points is "the work moving a unit positive test charge from one point to the other")
Now in our above example where V = 1 Joule / Coulomb
if we move 10 Coulombs from the negative plate to the positive plate
W = V Q = 1 Joule / Coulomb * 10 Coulombs = 10 Joules
where work done has the correct units of Joules.
Your textbook should help clarify this.
I would say true. If you are calculating using vectors than it would need both...