Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.
It is E=something which leases another something equaling another something
Answer:
The correct answer is c
Explanation:
In these two different models of movement of the planets
Ptolemy raises the Earth as the center of the solar system
In the Copernicus system, it poses the Sun as the center of the solar system.
Copernicu's system was accepted for giving a simpler and more complete explanation of the problem
The correct answer is c
Answer:
Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1
Explanation:
Both the velocity and kinetic energy of a gas molecule depends on its relative molecular mass according to Graham's law of diffusion in gases. Hence, the greater the relative molecular mass of the gas, the lesser its average velocity and kinetic energy.
Hence we can see that statement 2 vividly explains the postulation of statement 1 and makes the points more easily comprehensible.
In light of this, V=V 0 loge (r/r 0 ) Field E= dr dV =V 0(r0r) eE= r mV2 alternatively, reV0r0=rmV2. V=(m eV 0 r 0 ) \ s1 / 2mV=(m e V 0 r 0 ) 1/2 = constant mvr= 2 nh, also known as Bohr's quantum condition or Hermitian matrix.
Show that the eigenfunctions for the Hermitian matrix in review exercise 3a can be normalized and that they are orthogonal.
Demonstrate how the pair of degenerate eigenvalues for the Hermitian matrix in review exercise 3b can be made to have orthonormal eigenfunctions.
Under the given Hermitian matrix, "border conditions," solve the following second order linear differential equation: d2x/ dt2 + k2x(t) = 0 where x(t=0) = L and dx(t=0)/ dt = 0.
To know more about Hermitian click on the link:
brainly.com/question/14671266
#SPJ4