Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
Answer:

Explanation:
The formula for kinetic energy is:

We can plug in the given values into the equation:



Answer:
I think is Number 2
The rate at which calcium chloride is equal to the rate at which sodium chloride is produced.
Let me know if I'm wrong.
Ferromagnetic, paramagnetic, and diamagnetic
Efficiency = Power Output / Power Input
Power Input = Rate of Energy input = 44.4 MJ/kg * 5 kg/h
= 222 MJ/h
But 1 hour = 3600seconds
222 MJ/h = 222 MJ/3600s = 0.061667 MW J/s = Watts
Power input = 0.061667 MW = 61 667 W
From Efficiency = Power Output / Power Input
28% = Power Output / 61667
Power Output = 0.28 * 61667
Power Output = 17266.76 W
Power Output ≈ 17 267 W
Rate of heat rejection = Power Input - Power Output
= 61667 - 17267 = 44400 W
Rate of heat rejection = 44 400W.