Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.

x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land
Answer:
I would have to go with A, or maybe....yea A
Answer:
Angular acceleration, is 
Explanation:
Given that,
Initial speed of the drill, 
After 4.28 s of constant angular acceleration it turns at a rate of 28940 rev/min, final angular speed, 
We need to find the drill’s angular acceleration. It is given by the rate of change of angular velocity.

So, the drill's angular acceleration is
.
The correct answer B. Not affected by cognition
Explanation:
In the Social Cognitive Theory, the most important aspects are social interaction and cognition that involves mental processes such as comprehension. Indeed, this theory proposes behaviors are the result of observing other people as part of social interaction, understanding this behavior, and then imitating it.
Despite this, many psychologists do not support this theory and the main reason is that they deny the learning of behavior is related to cognition or complex mental processes. Instead, some believe behavior is the result of certain impulses or that is regulated by conditioning such as behaving correctly to avoid negative consequences.
Answer:
The magnetic field inside the solenoid would decrease by a factor of 2.
Explanation:
The magnetic field, B, of a solenoid of length L, N windings, and radius b with a current, I, flowing through it is given as:
B = (N * r * I) / L
If the length of the solenoid is doubled, 2L,the magnetic field becomes:
B2 = (N * r * I) / 2L
B2 = ½ B
The magnetic field will decrease by a factor of 2.