The sum of angles of a triangle is 180°.
48 +(6x -28) +2x = 180
8x +20 = 180
8x = 160
x = 20
∠B = (6x -28)° = (6*20 -28)° = 92°
∠C = 2x° = 40°
___
x = 20
∠B = 92°
∠C = 40°
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Answer:
Think of the total as 1/5 + 1/5 + 1/5 = 3/5
You have THREE fifths of material.
You use ONE of those fifths.
That leaves you with TWO fifths.
Step-by-step explanation:
Answer:
-3f+101
Step-by-step explanation:
Answer:
3577
Step-by-step explanation:
From the question given above, the following data were obtained:
7•2ᶦ
i = 0, 1, 2, .., 8
Sum =?
The sum can be obtained as follow:
7•2ᶦ
i = 0
7•2⁰ = 7 × 1 = 7
i = 1
7•2ᶦ = 7•2¹ = 7 × 2 = 14
i = 2
7•2ᶦ = 7•2² = 7 × 4 = 28
i = 3
7•2ᶦ = 7•2³ = 7 × 8 = 56
i = 4
7•2ᶦ = 7•2⁴ = 7 × 16 = 112
i = 5
7•2ᶦ = 7•2⁵ = 7 × 32 = 224
i = 6
7•2ᶦ = 7•2⁶ = 7 × 64 = 448
i = 7
7•2ᶦ = 7•2⁷ = 7 × 126 = 896
i = 8
7•2ᶦ = 7•2⁸ = 7 × 256 = 1792
Sum = 7 + 14 + 28 + 56 + 112 + 224 + 448 + 896 + 1792
Sum = 3577