Answer:
Part 1) The trapezoid has an area of 
Part 2) The kite has an area of
Part 3) The area of the trapezoid is less than the area of the kite
Step-by-step explanation:
Part 1
Find the area of trapezoid
we know that
The area of trapezoid is equal to the area of two congruent triangles plus the area of a rectangle
so
![A=2[\frac{1}{2} (2)(5)]+(2)(5)](https://tex.z-dn.net/?f=A%3D2%5B%5Cfrac%7B1%7D%7B2%7D%20%282%29%285%29%5D%2B%282%29%285%29)
Part 2
Find the area of the kite
we know that
The area of the kite is equal to the area of two congruent triangles
so
![A=2[\frac{1}{2} (7)(3)]=21\ m^2](https://tex.z-dn.net/?f=A%3D2%5B%5Cfrac%7B1%7D%7B2%7D%20%287%29%283%29%5D%3D21%5C%20m%5E2)
Part 3
Compare the areas
The trapezoid has an area of 
The kite has an area of
so

therefore
The area of the trapezoid is less than the area of the kite
1/2. You would round 3/8 to 1/2 to 0. Then you add 1/2 to 0 and you get your answer.