True. Water acts as a solvent as the solute dissolves into water.
Answer:
Metallic bonding
Explanation:
Metals have low ionization energies. Therefore, their valence electrons are easily delocalized (attracted to the neighbouring metal atoms). These delocalized electrons are then not associated with a specific metal atom. Since the electrons are “free”, the metal atoms have become cations, and the electrons are free to move throughout the whole crystalline structure.
We say that a metal consists of an array of cations immersed in a sea of electrons
.
The electrons act as a “glue” holding the cations together.
Metallic bonds are the attractive forces between the metal cations and the sea of electrons.
In an NaK alloy, for example, the Na and K atoms contribute their valence electrons to the "sea". The atoms aren’t bonded to each other, but they are held in place by the metallic bonding.
<span>You can compare the strength of the hydrogen bonding by comparing the electronegativities of the other elements. All the four elements, Br, F, Cl and I belong to the same group in the periodic table: group 17 named halogens. Then the kind of bonding they form is similar: polar covalent. You must know the trend of the electronegativities in the periodic table. Electronegativity decrease when you down across a group. Then the electronegativity of F is the higher of the group (indeed, it is the highest of all the 118 elements) . The higher the electronegativity the stronger the attraction that the halogen attracts the electrons and the stronger the hydorgen bonding. Then, the conclusion is that HF has the strongest hydrogen bonding. </span>
Answer: B2Br6 + 6HNO3 → 2B(NO3)3 + 6BrH
Equation
B2Br6+HNO3=B(NO3)3+HBr
B=2 B=1
BR=6 BR=1
H=1 H=1
N=1 N=3
O=3 O=9
ANSWER
B2Br6 + 6HNO3 → 2B(NO3)3 + 6BrH
B=2 B=2
BR=6 BR=6
H=6 H=6
N=6 N=6
O=18 O=18
HOPE THIS HELPS
Answer : The value of
is -49.6 kJ/mol
Explanation :
First we have to calculate the reaction quotient.
Reaction quotient (Q) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
The given balanced chemical reaction is,

The expression for reaction quotient will be :
![Q=\frac{[ADP][HPO_4^{2-}]}{[ATP]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BADP%5D%5BHPO_4%5E%7B2-%7D%5D%7D%7B%5BATP%5D%7D)
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Given:
= 5.0 mM
= 0.60 mM
= 5.0 mM
Now put all the given values in this expression, we get

Now we have to calculate the value of
.
The formula used for
is:
............(1)
where,
= Gibbs free energy for the reaction = ?
= standard Gibbs free energy = -30.5 kJ/mol
R = gas constant = 
T = temperature = 
Q = reaction quotient = 
Now put all the given values in the above formula 1, we get:


Therefore, the value of
is -49.6 kJ/mol