Answer:
t = 180 / 1.4 = 129 sec (time to swim horizontally across river)
S = 129 sec * V where V is speed of current and S is the distance he will be carried downstream
The problem does not specify V the speed of the river
Area near a sea having flat land and low relief
Answer:
Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.
Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).