Answer:
172.9m
Explanation:
h = 1/2 gt^
First calculat for t using
v = gt
t = v/g = 58.8/10
= 5.88secs
now h = 1/2 x 10 x 5.88^2
h =1/2 x 10 x 34.57
= 345.74/2
= 172.9m
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
You just multiply these two numbers, it's 1250J
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation:
I think it should be D as momentum is the product of mass and velocity...