Answer:
Carbon dioxide is used as a refrigerant, in fire extinguishers, for inflating life rafts and life jackets, blasting coal, foaming rubber and plastics, promoting the growth of plants in greenhouses, immobilizing animals before slaughter, and in carbonated beverages.
Answer:
Qsp > Ksp, BaCO3 will precipitate
Explanation:
The equation of the reaction is;
Na2CO3 + BaBr2 -------> 2NaBr + BaCO3
Since BaCO3 may form a precipitate we can determine the Qsp of the system.
Number of moles of Na2CO3 = 0.96g/106 g/mol = 9.1 * 10^-3 moles
concentration of NaCO3 = number of moles/volume of solution = 9.1 * 10^-3 moles/10 L = 9.1 * 10^-4 M
Number of moles of BaBr2 = 0.20g/297 g/mol = 6.7 * 10^-4 moles
concentration of BaBr2 = 6.7 * 10^-4 moles/10 L = 6.7 * 10^-5 M
Hence;
[Ba^2+] = 6.7 * 10^-5 M
[CO3^2-] = 9.1 * 10^-4 M
Qsp = [6.7 * 10^-5] [9.1 * 10^-4]
Qsp = 6.1 * 10^-8
But, Ksp for BaCO3 is 5.1*10^-9.
Since Qsp > Ksp, BaCO3 will precipitate
More valence electrons and larger atomic radius are facts most suitable for increasing the electrical conductivity of metals.
<u>Answer:</u> The vapor pressure of the liquid is 0.293 atm
<u>Explanation:</u>
To calculate the vapor pressure of the liquid, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= pressure of the liquid = ?
= Heat of vaporization = 28.9 kJ/mol = 28900 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = 341.88 K
= final temperature = 305.03 K
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28900J/mol}{8.314J/mol.K}[\frac{1}{341.88}-\frac{1}{305.03}]\\\\\ln P_2=-1.228atm\\\\P_2=e^{-1.228}=0.293atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28900J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B341.88%7D-%5Cfrac%7B1%7D%7B305.03%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D-1.228atm%5C%5C%5C%5CP_2%3De%5E%7B-1.228%7D%3D0.293atm)
Hence, the vapor pressure of the liquid is 0.293 atm