Stamen is not an outer covering its the reproductive organ of the plants.
<h3>What is use of covering of Plants ?</h3>
Outer covering of plants is useful in protecting them from environment factors , it is useful in keeping the moisture intact inside the plants.
Among the different outer covering , Bark ,stamen , spines and fuzzy hairs
Bark , stamen and fuzzy hairs are all the outer covering of plants
Stamen is not an outer covering its the reproductive organ of the plants.
To know more about outer covering of Plants
brainly.com/question/20411910
#SPJ1
molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
There are two valence electrons.
Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
A: Trial 1, because the average rate of the reaction is lower.
The rate of reaction is the speed with which reactants are converted into products. It is also the rate at which reactants disappear and products appear. The higher the rate of reaction, the greater the amount of product formed in a reaction.
If we look at the graph, we will realize that trial 1 produces a lesser amount of product than trial 2. This implies that the average rate of the reaction in trial 1 is lower than in trial 2.
Lower average rate of reaction implies lower concentration of the reactants since the rate of reaction depends on the concentration of reactants.
Hence trial 1 has a lower concentration of reactants because the average rate of the reaction is lower.