Answer:
Number of moles = 2.8 mol
Explanation:
Given data:
Number of moles of water = ?
Volume of water = 50 mL
Density of water = 1.00 g/cm³
Solution:
1 cm³ = 1 mL
Density = mass/ volume
1.00 g/mL = mass/ 50 mL
Mass = 1.00 g/mL× 50 mL
Mass = 50 g
Number of moles of water:
Number of moles = mass/molar mass
Number of moles = 50 g / 18 g/mol
Number of moles = 2.8 mol
<span>Scientific endeavors is basically all the things that would contribute to the process of achieving a certain scientific knowledge, from the initial observation, up to the point until we can hold that certain thing as acknowledged truth. So,
All scientific endeavors are supported by evidence.
All scientific endeavors are a systemic process.
All scientific endeavors involve observation.
All scientific endeavors involve experimentation.
All scientific endeavors involve the collection of information.
</span>
Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant.
Explanation:
hope this helped!
To balance a chemical reaction, it is important to remember that the number of atoms of each element in the reactants and the product side should be equal. This is to follows the law of conservation of mass where mass cannot be created or destroyed. So, the total mass that is used to react should have the same value of the total mass of the substances produced from the reactants. The balanced chemical reaction would be written as follows:
<span> 2h2 + o2 = 2h2o
Reactant = Product
H = 4 = 4
O = 2 = 2
Therefore, the correct coefficient for the hydrogen gas would be 2.</span>
From Grahams Law the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure.
Therefore; R1/R2 = √mm2/√mm1
The molecular mass of Carbon dioxide is 44 g
Hence; 1.8 = √(44/x
3.24 = 44/x
x = 44/3.24
= 13.58
Therefore, the molar mass of the other gas is 13.58 g/mol